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Path integration in conical space
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Quantum mechanics in conical space is studied by the path integral method. It is shown that the
curvature effect gives rise to an effective potential in the radial path integral. It is further shown that
the radial path integral in conical space can be reduced to a form identical with that in flat space
when the discrete angular momentum of each partial wave is replaced by a specific non-integral angular
momentum. The effective potential is found proportional to the squared mean curvature of the conical
surface embedded in Euclidean space. The path integral calculation is compatible with the Schrödinger
equation modified with the Gaussian and the mean curvature.
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1. Introduction

In recent years there has been considerable interest in quan-
tum mechanics in the field of topological defects (see, e.g., [1]).
Although the notion of defects in physics was originally associated
with crystalline irregularities, it has been extended to more gen-
eral topological structures such as entangled polymers, liquid crys-
tals, magnetic vortices, anyons, monopoles, cosmic strings, domain
walls, and so on. Standard approaches to particle-defect interac-
tions in quantum mechanics are to solve appropriate Schrödinger
equations with relevant boundary conditions. The space surround-
ing a defect is often characterized by torsion and curvature. The
torsion may be globally treated through boundary conditions in
connection with the topological nature of the defect as in the case
of the Aharonov–Bohm effect, whereas the information of curva-
ture would have to be fully contained in the Schrödinger equation.
In curved space, the Schrödinger equation is usually expressed in
the form,

{
− h̄2

2M
� + V c(r) + V (r)

}
ψ(r) = ih̄

∂

∂t
ψ(r) (1)

where � is the Laplace–Beltrami operator, V c(r) is the so-called
curvature term and V (r) is any external potential. Historically,
Podolsky [2] defined the Schrödinger equation in curved space
without the curvature term, namely V c(r) = 0. Comparing with
the path integral formulation, DeWitt [3] asserted that the cur-
vature term is proportional to the Ricci scalar curvature, that is,
V c(r) = gh̄2 R(r) where g is a constant. Moreover, Jensen and

* Corresponding author. Tel.: +49 89 32006231; fax: +49 89 32006231.
E-mail address: gjunker@eso.org (G. Junker).
0375-9601/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.physleta.2011.11.019
Koppe [4], and da Costa [5] argued, if the particle in question is
constrained to move on a two-dimensional curved surface, the cur-
vature term must be give by

V c(r) = h̄2

2M

{
K (r) − H2(r)

}
(2)

where K (r) is the Gaussian curvature and H(r) is the mean curva-
ture of the curved surface.1

In a recent paper [10], we have studied quantum mechanics in
the field of a dispiration (a combined structure of a dislocation
and a disclination), and have pointed out that the path integral
calculation leads to a result different from that of the Schrödinger
equation in the Podolsky form with no curvature term. The pur-
pose of the present Letter is to show that for a particle moving
in conical space the path integral calculation is consistent with
the Schrödinger equation only when the curvature term is of the
Jensen–Koppe form (2). We find that the curvature effect of the
conical surface gives rise to an effective potential in the radial
path integral and that the effective potential is proportional to the
squared mean curvature of the conical surface.

2. Conical space

We consider a two-dimensional curved space with metric,

dl2 = dr2 + σ 2r2 dθ2, (3)

where 0 � r and θ ∈ [0,2π), σ being a real parameter. If |σ | � 1,
this space may be realized as a conical surface when imbedded in
the three-dimensional Euclidean space with

1 For more recent and more general discussions, see [6–9].
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x = σ r cos θ,

y = σ r sin θ,

z =
√

1 − σ 2r. (4)

Obviously the limiting case where σ = 1 corresponds to the two-
dimensional flat space with z = 0.

The medium around an axial wedge dislocation in solid may
be characterized by such a space, for which σ is related to the
deficit angle γ via σ = 1 − γ /2π . See, e.g., [10,11]. Another ex-
ample is the space surrounding a massive cosmic string with a
linear energy density η, given in a weak field approximation, for
which σ = 1 − 4Gη where G is the Newtonian gravitational con-
stant [12]. The conical topology also occurs in (2 + 1)-dimensional
Einstein gravity with localized masses [13]. In this connection, the
Schrödinger equation in conical space has been further discussed
in [14–16].

In the present Letter, however, we study quantum mechanics
in the space with metric (3) by path integration. Specifically we
carry out path integration for a particle with mass M moving in
the conical space with metric (3) under the influence of a two-
dimensional central potential V (r). The Lagrangian for the particle
is

L = M

2

(
ṙ2 + σ 2r2θ̇2) − V (r). (5)

Although the potential V (r) will appropriately be chosen later for
explicit calculation, we assume that it contains a short-ranged re-
pulsive part. In fact, the Hamiltonian describing a free motion in a
conical space has a one-parameter family of self-adjoint extensions
and requires a careful definition of boundary conditions imposed
at r = 0. Such boundary conditions are to be determined by the
physics near r = 0 [15]. We circumvent such a singularity problem
at r = 0 by assuming an appropriate short-ranged repulsive poten-
tial.

3. The propagator

What we wish to calculate by path integration is the propaga-
tor or Feynman’s kernel for the aforementioned system. Feynman’s
path integral for the propagator may be given in the time-sliced
form [17],

K
(
r′′, r′;τ ) = lim

N→∞

∫ N−1∏
j=1

d2r j

N∏
j=1

K (r j, r j−1;ε) (6)

where the time interval τ = t′′ − t′ is sliced into N short-time in-
tervals ε = τ/N . The short time propagator is given by

K (r j, r j−1;ε) = Mσ

2π ih̄ε
e(i/h̄)S j (7)

with a short-time action,

S j =
t j∫

t j−1

L dt = M

2ε
�r2

j − V (r j)ε. (8)

The amplitude of the short-time propagator (7) has been deter-
mined by the condition,

lim
ε→0

K (r j, r j−1;ε) = δ(r j − r j−1). (9)

Here we intend to carry out path integration for (6) in polar
coordinates [18–20] using the relations [10],
N−1∏
j=1

d2r j =
N−1∏
j=1

r j dr j dθ j,

�r2
j = �r2

j + 2σ 2r̂2
j (1 − cos�θ j) (10)

where r̂ j = (r jr j−1)
1/2. The angular integration is easily performed

by utilizing the generating function for the modified Bessel func-
tion,

exp{z cos �θ j} =
∞∑

m=−∞
eim�θ j Im(z), (11)

valid for any complex number z. As a result of the successive an-
gular integrations, the propagator (6) can be expressed in the form
of the partial wave expansion,

K
(
r′′, r′;τ ) = 1

2π

∞∑
m=−∞

eim(θ ′′−θ ′)Rm
(
r′′, r′;τ )

. (12)

The radial propagator for the m-th partial waves still remains to be
path-integrated by

Rm
(
r′′, r′;τ ) = lim

N→∞

∫ N−1∏
j=1

r j dr j

N∏
j=1

Rm(r j, r j−1;ε) (13)

with the short-time radial propagator

Rm(r j, r j−1;ε) = M

ih̄ε
exp

{
i

h̄

[
M

2ε

(
r2

j + r2
j−1

) − V (r j)ε

]}
Iσm(r̂ j)

(14)

where

Iσm(r̂ j) = σ exp

{
iM

h̄ε

(
σ 2 − 1

)
r̂2

j

}
Im

(
Mσ 2

ih̄ε
r̂2

j

)
. (15)

Notice that the parameter σ appears in (14) only though the func-
tion (15) and that

I1
m(r̂ j) = lim

σ→1
Iσm(r̂ j) = Im

(
M

ih̄ε
r̂2

j

)
. (16)

In the limit σ → 1, the radial propagator (13) becomes that in flat
space. Accordingly, (16) is the modified Bessel function to appear
in a flat space path integral. Hence the effect of the deviation from
the flat space path integral is all contained in (15). In what follows,
using the asymptotic recombination technique, we shall show that
the deviation from the flat space gives rise to an effective potential
in the radial path integral.

4. The curvature effect

A very useful calculation method for a polar coordinate path
integral is the asymptotic recombination technique [21], to which
basic is the one-term asymptotic formula of the modified Bessel
function, originally employed by Edwards and Gulyaev [18],

Iν(z) ∼ 1√
2π z

exp

{
z − 1

2z

(
ν2 − 1

4

)}
, (17)

valid for large |z| with Re z > 0. In a polar coordinate path integral,
the complex variable z is of the form z = Mar2/(ih̄ε) where a is a
positive real constant. In order to justify the use of the asymptotic
formula, it is necessary to assume that M/h̄ has a small positive
imaginary part Im(M/h̄) > 0. The same trick has been used in the
standard analytic continuation procedure to obtain a well-defined
Feynman path integral. Of course, in this case, |z| is large when ε
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is small. It is clear that the asymptotic formula (17) is valid insofar
as it is used for a short-time Feynman path integral.

Substituting (17) with z = Mσ 2r̂2
j /(ih̄ε) into (15), combining

the exponential factor of (15) with (17), and rearranging terms,
we find the result,

Iσm(r̂ j) ∼ exp

{
− i

h̄
V eff (r̂ j)ε

}
Im/σ

(
M

ih̄ε
r̂2

j

)
(18)

where

V eff (r̂ j) = − h̄2

2M

1 − σ 2

4σ 2r̂2
j

. (19)

Correspondingly, the short-time radial propagator (14) can be writ-
ten as

Rm(r j, r j−1;τ )

= M

ih̄ε
exp

{
i

h̄

[
M

2ε

(
r2

j + r2
j−1

) − V (r j)ε − V eff (r j)ε

]}
I1
m/σ (r̂ j).

(20)

This means that the radial path integral in a conical space can be
understood as a flat space path integral modified with the effective
potential (19). Furthermore, the integral angular momentum m of
each partial wave is replaced by a non-integral angular momentum
m/σ . Note that m/σ is not assumed to be an integer or a fractional
number but is yet countable. The angular summation (12) for the
full propagator is still over m ∈ Z.

The appearance of the effective potential V eff (r) in (20) as an
addition to the assumed external potential V (r) is remarkable.
What is more remarkable is however that (19) is identifiable with
the effect of the curvature of the conical surface imbedded in Eu-
clidean space. The mean curvature and the Gaussian curvature of
the cone are given by

H(r) =
√

1 − σ 2

2σ r
and K (r) = 2π

1 − σ

σ
δ(2)(x, y), (21)

respectively, where δ(2)(x, y) represents the two-dimensional δ-
function (see [10] for detail). Apparently the effective poten-
tial (19) can be expressed as

V eff (r) = − h̄2

2M
H2(r). (22)

In the presence of a repulsive potential which regularizes the sin-
gularity at r = 0, i.e. propagator and wave function vanish at r = 0,
the Gaussian curvature has no effect and we can put (22) into the
form

V eff (r) = h̄2

2M

{
K (r) − H2(r)

}
. (23)

The last expression is indeed identical in form with the curvature
term (2) in the Schrödinger equation. This means that the path
integral calculation in conical space is consistent only with the
Schrödinger equation modified by the curvature term of the form
of (2).

5. The energy spectrum and the wave functions

In the above, we have expressed the short-time radial propa-
gator in the form (20) in order to emphasize the emergence of
the effective potential which is identifiable with the mean curva-
ture of the conical surface. Since the effective potential as is given
by (19) is of the inverse square form ∼ 1/r2, it can be absorbed
via the asymptotic recombination into the index of the modified
Bessel function, so that the function (18) can be given by
Iσm(r̂ j) ∼ Iμ(m)

(
M

ih̄ε
r̂2

j

)
(24)

with

μ(m) = 1

2σ

√
4m2 + σ 2 − 1. (25)

Thus the short-time radial propagator may also be written as

Rm(r j, r j−1;ε) = M

ih̄ε
exp

{
i

h̄

[
M

2ε

(
r2

j + r2
j−1

) − V (r j)ε

]}

× Iμ

(
M

ih̄ε
r̂2

j

)
. (26)

Here the cone topology is completely encoded in the index of
the modified Bessel function. In other words, the short-time ra-
dial propagator (26) is formally identical with that of flat space
with angular momentum m ∈ Z replaced by an effective angular
momentum μ(m) ∈ R. It is important to notice that whenever the
centrally symmetric problem in flat space is soluble by path inte-
gration the corresponding problem on the conical space can also
be solved by path integration.

To carry out the radial path integration, we have to specify
the external potential V (r). For convenience to our discussion, we
consider a combination of the harmonic oscillator potential and a
repulsive inverse-square potential,

V (r) = 1

2
Mω2r2 + κh̄2

8σ 2Mr2
, (27)

where κ > 1 − σ 2 > 0. This represents long-range attraction and
short-range repulsion. The repulsive potential with the chosen κ
removes the singularity at r = 0. In fact the finite-time radial path
integral for the potential (27) in flat space has been explicitly eval-
uated [19,22–24], the result being

Rm
(
r′′, r′;τ ) = Mω

2π ih̄ sinωτ
exp

{
iMω

2h̄

(
r′2 + r′′2) cotωτ

}

× Iν(m,1)

(
Mω

ih̄ sinωτ
r′r′′

)
(28)

with

ν(m,1) = 1

2

√
4m2 + κ. (29)

As is mentioned above, the finite-time radial propagator in the
conical space can be immediately obtained from (28) by simply
replacing ν(m,1) by

ν(m,σ ) = 1

2σ

√
4ν2(m,1) + σ 2 − 1

= 1

2σ

√
4m2 + κ + σ 2 − 1. (30)

The desired result is therefore identical with (28) if ν(m, σ ) of (30)
is in the place of ν(m,1).

With the help of (12) and the Hille–Hardy formula [25], the full
propagator can be expressed in the spectral representation,

K
(
r′′, r′;τ ) =

∞∑
n=0

∞∑
m=−∞

e−(iτ/h̄)EnmΨ ∗
nm

(
r′, θ ′)Ψnm

(
r′′, θ ′′) (31)

with the energy spectrum and the energy eigenfunctions given, re-
spectively, by

Enm = h̄ω

(
2n + 1 + 1

2σ

√
4m2 + κ + σ 2 − 1

)
(32)

and
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Ψnm(r, θ) = Nnmeimθ rν(m,σ )e−(Mω/2h̄)r2

× 1 F1
(−n, ν(m,σ ) + 1; (Mω/h̄)r2) (33)

where

Nnm = 1

�(ν(m,σ ) + 1)

√
�(n + ν(m,σ ) + 1)

πn!
(

Mω

h̄

)(ν+1)/2

.

(34)

As we have assumed κ � 1−σ 2 for making the system singularity-
free, the energy eigenvalues (32) are assured to be real. Since
ν(m, σ ) in (30) also remains real, the wave functions (33) vanish
at r = 0 for ν(m, σ ) 	= 0.

6. Conclusion

In the present Letter path integration has been carried out ex-
plicitly for a particle in the field of a topological defect character-
ized by the conical metric (3). By the asymptotic recombination
technique applied to the short-time path integral, we have shown
that the quantum mechanics in a conical space is essentially iden-
tical to that in flat space with rescaled angular momentum, and
that the path integration calculation naturally leads to an effective
potential which is proportional to the squared mean curvature of
the conical space imbedded in Euclidean space. We have seen that
our path integral calculation is consistent with the Schrödinger
equation modified by the Gaussian and mean curvatures as in [4].
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